organic compounds

T = 200 (2) K $0.20 \times 0.17 \times 0.06$ mm

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(Cyclopentane-1,1-diyl)dimethanol

Richard Betz, Peter Klüfers* and Peter Mayer

Ludwig-Maximilians Universität, Department Chemie und Biochemie, Butenandtstrasse 5–13 (Haus D), 81377 München, Germany Correspondence e-mail: kluef@cup.uni-muenchen.de

Received 17 December 2008: accepted 12 January 2009

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.003 Å; R factor = 0.061; wR factor = 0.149; data-to-parameter ratio = 19.9.

In the title compound, C7H14O2, co-operative eight-membered homodromic rings of $O-H \cdots O$ hydrogen bonds connect the molecules into strands along [100]. According to graph-set analysis, the descriptor of these cycles is $R_4^4(8)$. The cyclopentane-ring adopts an envelope conformation (^{C4}E) .

Related literature

The compound was synthesized according to a published procedure (Domin et al., 2005). For the influence of chelation to (semi-)metals on the geometry of bifunctional alcohols, see: Klüfers & Vogler (2007). For the structure of a related compound, see Wender et al. (1999). For details on graph-set analysis of hydrogen bonds, see Etter et al. (1990); Bernstein et al. (1995). For details of puckering analysis, see Cremer & Pople (1975).

Experimental

Crystal	data
Crysiai	иши

$C_7H_{14}O_2$	b = 10.631 (3) Å
$M_r = 130.18$	c = 11.917 (3) Å
Monoclinic, $P2_1/n$	$\beta = 98.33 \ (2)^{\circ}$
a = 5.8614 (16) Å	V = 734.7 (3) Å ³

Z = 4
Mo $K\alpha$ radiation
$\mu = 0.08 \text{ mm}^{-1}$

Data collection

Oxford Diffraction Xcalibur diffractometer Absorption correction: none 224 measured reflections	1692 independent reflections 924 reflections with $I > 2\sigma(I)$ $R_{int} = 0.067$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.061$	85 parameters

 $wR(F^2) = 0.149$ S = 1.011692 reflections $2\sigma(I)$

H-atom parameters constrained $\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.17 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1-H1···O2 ⁱ	0.84	1.91	2.720 (2)	163
$O2-H2\cdots O1^n$	0.84	1.88	2.691 (2)	161

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x + 1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank Professor Klapötke for generous allocation of diffractometer time and Sandra Albrecht for professional support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2170).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Domin, D., Benito-Garagorri, D., Mereiter, K., Froehlich, J. & Kirchner, K. (2005). Organometallics, 24, 3957-3965.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Klüfers, P. & Vogler, C. (2007). Z. Anorg. Allg. Chem. 633, 908-912.
- Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wender, P. A., Glorius, F., Husfeld, C. O., Langkopf, E. & Love, J. A. (1999). J. Am. Chem. Soc. 121, 5348-5349.

supplementary materials

Acta Cryst. (2009). E65, o479 [doi:10.1107/S1600536809001330]

(Cyclopentane-1,1-diyl)dimethanol

R. Betz, P. Klüfers and P. Mayer

Comment

In a program focused on the influence of chelation to (semi-)metals on the geometry of bifunctional alcohols (Klüfers & Vogler, 2007), the structure of 1,1-bis(hydroxymethyl)cyclopentane was elucidated.

Neglecting the hydrogen atoms of the hydroxy groups, the molecule would show non-crystallographic C_2 symmetry (Fig. 1).

According to a conformational analysis (Cremer & Pople, 1975), the cyclopentane-moiety adopts an *envelope* conformation $^{C4}E(Q_2 = 0.404 (3) \text{ Å})$, which is slightly distorted towards a *twist* conformation $^{C4}T_{C3} (\varphi_2 = 280 (4)^\circ)$.

In the crystals structure, hydrogen bonds furnish the formation of cooperative eight-membered homodromic rings (Fig. 2). These connect the molecules to strands along [1 0 0]. In terms of graph-set analysis (Etter *et al.*, 1990; Bernstein *et al.*, 1995), the descriptor for this pattern is $R_4^4(8)$.

The molecular packing of the compound is shown in Figure 3.

Experimental

The compound was prepared upon reacting 1,4-dibromobutane with malonic acid diethylester under basic conditions according to a published procedure (Domin *et al.*, 2005). Crystals suitable for X-ray analysis were obtained upon recrystallization of the crude reaction product from a boiling mixture of ethyl acetate - light petrol ether (1:1).

Refinement

All H-atoms were placed in calculated positions (C—H 0.99 Å and O—H 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to $1.2U_{eq}(C)$ for methylene groups and U(H) set to $1.5U_{eq}(O)$. Hydroxyl H atoms were allowed to rotate with a fixed angle around the C-O bond to best fit the experimental electron density (HFIX 147 in the *SHELX* program suite (Sheldrick, 2008)).

Figures

Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.

Fig. 2. Hydrogen bonds in the crystal structure of the title compound, viewed along [0 1 0]. Symmetry operators: $i_x - 1, y, z$; $i_z - 1, -y, z$.

Fig. 3. The packing of the title compound, viewed along [-1 0 0].

(Cyclopentane-1,1-diyl)dimethanol

Crystal data	
$C_{7}H_{14}O_{2}$	Z = 4
$M_r = 130.18$	$F_{000} = 288$
Monoclinic, $P2_1/n$	$D_{\rm x} = 1.177 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 2yn	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 5.8614 (16) Å	$\theta = 4.6 - 27.5^{\circ}$
b = 10.631 (3) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 11.917 (3) Å	T = 200 K
$\beta = 98.33 \ (2)^{\circ}$	Platelet, colourless
$V = 734.7(3) \text{ Å}^3$	$0.20\times0.17\times0.06~mm$

Data collection

Oxford Diffraction Xcalibur diffractometer	924 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.067$
Monochromator: graphite	$\theta_{\text{max}} = 27.5^{\circ}$
T = 200 K	$\theta_{\min} = 4.6^{\circ}$
ω scans	$h = -7 \rightarrow 4$
Absorption correction: none	$k = -13 \rightarrow 13$
4224 measured reflections	$l = -14 \rightarrow 15$
1692 independent reflections	

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.061$	H-atom parameters constrained
$wR(F^2) = 0.149$	$w = 1/[\sigma^2(F_o^2) + (0.0527P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} < 0.001$
1692 reflections	$\Delta \rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$
85 parameters	$\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.2142 (2)	0.49721 (17)	0.14033 (13)	0.0473 (5)
H1	0.2522	0.5090	0.0758	0.071*
O2	0.7532 (3)	0.48406 (16)	0.08445 (12)	0.0431 (5)
H2	0.8893	0.4984	0.1146	0.065*
C1	0.5747 (4)	0.41846 (19)	0.24878 (17)	0.0299 (5)
C2	0.7724 (4)	0.4594 (2)	0.34277 (18)	0.0381 (6)
H21	0.9204	0.4638	0.3122	0.046*
H22	0.7393	0.5432	0.3729	0.046*
C3	0.7843 (5)	0.3602 (2)	0.4357 (2)	0.0562 (8)
H31	0.8906	0.2912	0.4223	0.067*
H32	0.8361	0.3975	0.5112	0.067*
C4	0.5393 (6)	0.3131 (3)	0.4270 (2)	0.0586 (8)
H41	0.4413	0.3733	0.4619	0.070*
H42	0.5330	0.2302	0.4641	0.070*
C5	0.4640 (4)	0.3034 (2)	0.2995 (2)	0.0475 (7)
H51	0.2939	0.3064	0.2812	0.057*
H52	0.5198	0.2240	0.2696	0.057*
C6	0.4039 (4)	0.5258 (2)	0.22489 (19)	0.0363 (6)
H61	0.3447	0.5481	0.2960	0.044*
H62	0.4853	0.6002	0.2004	0.044*
C7	0.6631 (4)	0.3799 (2)	0.14014 (19)	0.0388 (6)
H71	0.7856	0.3158	0.1581	0.047*
H72	0.5356	0.3410	0.0880	0.047*

Atomic displacement parameters ($Å^2)$
----------------------------------	--------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0243 (8)	0.0853 (13)	0.0320 (8)	0.0014 (8)	0.0036 (7)	0.0073 (9)
O2	0.0276 (8)	0.0721 (12)	0.0303 (8)	-0.0023 (9)	0.0060 (7)	0.0062 (8)
C1	0.0290 (11)	0.0332 (11)	0.0274 (11)	-0.0025 (10)	0.0043 (9)	-0.0028 (9)
C2	0.0331 (12)	0.0496 (14)	0.0308 (11)	-0.0007 (11)	0.0018 (10)	-0.0010 (10)
C3	0.074 (2)	0.0586 (17)	0.0326 (13)	0.0067 (16)	-0.0032 (14)	0.0047 (12)
C4	0.093 (2)	0.0465 (15)	0.0408 (14)	-0.0035 (16)	0.0266 (15)	0.0052 (12)

supplementary materials

C5 C6	0.0526 (16) 0.0288 (11)	0.0417 (14) 0.0470 (14)	0.0500 (15) 0.0330 (11)	-0.0048 (13) 0.0021 (11)	0.0139 (13) 0.0039 (10)	0.0066 (12) 0.0001 (10)
C7	0.0348 (12)	0.0454 (13)	0.0370 (13)	0.0008 (11)	0.0074 (11)	-0.0068 (11)
	()				()	()
Geometric paran	neters (Å, °)					
O1—C6		1.421 (3)	С3—Н	31	0.99	00
O1—H1		0.8400	С3—Н	32	0.9900	
O2—C7		1.431 (3)	C4—C:	5	1.52	3 (4)
O2—H2		0.8400	C4—H	41	0.9900	
C1—C6		1.517 (3)	C4—H	42	0.99	00
C1—C7		1.519 (3)	С5—Н	51	0.99	00
C1—C5		1.548 (3)	С5—Н	52	0.99	00
C1—C2		1.553 (3)	С6—Н	61	0.99	00
C2—C3		1.524 (3)	С6—Н	62	0.99	00
C2—H21		0.9900	С7—Н	71	0.99	00
C2—H22		0.9900	С7—Н	72	0.99	00
C3—C4		1.510 (4)				
C6—O1—H1		109.5	C5—C4	4—H41	111.	2
С7—О2—Н2		109.5	C3—C4	4—H42	111.	2
C6—C1—C7		109.90 (18)	C5—C4	4—H42	111.2	
C6—C1—C5		111.40 (18)	H41—0	С4—Н42	109.	1
C7—C1—C5		109.48 (18)	C4—C:	5—C1	104.	99 (19)
C6—C1—C2		109.13 (17)	C4—C	5—H51	110.	7
C7—C1—C2		112.31 (17)	C1—C	5—H51	110.	7
C5—C1—C2		104.54 (18)	C4—C	5—H52	110.	7
C3—C2—C1		106.30 (19)	C1—C	5—H52	110.	7
С3—С2—Н21		110.5	H51—0	С5—Н52	108.	8
C1—C2—H21		110.5	O1—C	6—C1	113.	57 (18)
С3—С2—Н22		110.5	O1—C	6—H61	108.9	
C1—C2—H22		110.5	C1—C	6—H61	108.	9
H21—C2—H22		108.7	01—C	6—Н62	108.9	
C4—C3—C2		103.7 (2)	C1—C	6—H62	108.	9
C4—C3—H31		111.0	Н61—0	С6—Н62	107.	7
С2—С3—Н31		111.0	O2—C	7—C1	112.37 (18)	
С4—С3—Н32		111.0	O2—C	7—H71	109.1	
С2—С3—Н32		111.0	C1—C	7—H71	109.1	
H31—C3—H32		109.0	O2—C	O2—C7—H72		1
C3—C4—C5		103.1 (2)	C1—C	7—Н72	109.	1
C3—C4—H41		111.2	H71—0	С7—Н72	107.	9
C6—C1—C2—C3	3	125.3 (2)	С2—С	1—C5—C4	19.5	(2)
C7—C1—C2—C3	3	-112.5 (2)	С7—С	1—C6—O1	57.0	(2)
C5—C1—C2—C3	3	6.1 (2)	С5—С	1—C6—O1	-64.	6 (2)
C1—C2—C3—C4	4	-29.5 (2)	C2—C	1—C6—O1	-179	9.48 (17)
C2—C3—C4—C	5	41.6 (3)	С6—С	1—С7—О2	53.2	(2)
C3—C4—C5—C	1	-38.0 (3)	С5—С	1—C7—O2	175.	88 (19)
C6-C1-C5-C4	4	-98.3 (2)	C2—C	1—C7—O2	-68.	5 (2)
C7—C1—C5—C4	4	140.0 (2)				

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O1—H1···O2 ⁱ	0.84	1.91	2.720 (2)	163
O2—H2···O1 ⁱⁱ	0.84	1.88	2.691 (2)	161
Symmetry codes: (i) $-x+1$, $-y+1$, $-z$; (ii) $x+1$, y , z .				

